Climate change: Which parameters are most important?

Corrie Lynne Madsen, Erik Dahl Kjær and Anders Ræbild

Department of Geosciences and Natural Resource Management

Nordic-Baltic Forest Conference 15.09.2015
Dias 1
Climate Change

• IPCC climate projections for 2100: 1.8-4°C temperature increase

• Climate projections for Denmark:
 • 3-5 °C temperature increase
 • More frequent heavy precipitation
 • Increased frequency of intense storms

• Climate important component in geographic distribution of plants

• Climate change is already affecting animal and plant population distributions
Climate change will affect the composition of forests

- Three possible outcomes:
 - Natural migration to suitable niches
 - Adapt to new conditions
 - Cease to exist

- Trees will need to move at a rate of 1000 meters per year

- US study (Iversen et al. 2004) shows that trees are able to spread 100-200 meters per year
Assisted Migration

• Hewitt et al. (2009): “the intentional translocation or movement of species outside their historic ranges in order to mitigate actual or anticipated biodiversity losses caused by anthropogenic climatic change”

• Many examples of human mediated movement of species
 • Agriculture
 • Medicine
 • Ornamental
 • Silviculture

• Identification of new species already able to grow outside their natural habitat
Species Distribution Modeling (SDM)

- SDMs important tool for predicting successful introduction of species
- Used to identify contemporary and future homologous niches
- SDMs project distributions based on statistical associations between species occurrence/absence and environment variables
- Problems with SDMs:
 - Model limited to known distribution
 - Failure to find correct explaining variables (covariation between parameters)
Species Distribution Modeling

National and European perspectives on climate change sensitivity of the habitats directive characteristic plant species

Signe Normanda, c, Jens-Christian Svenninga, Flemming Skovb

- Bioclimatic variables based on monthly mean temperature and precipitation:
 - Growing degree days
 - Absolute minimum temperature
 - Water balance

- SDMs used to evaluate sensitivity of 84 plant species under two climate change scenarios
 - 69-99\% negatively affected
 - 4-7 \% lost from Denmark
Species Distribution Modeling

- Review of 163 SDM articles

- Three common approaches to variable selection:
 - All available bioclimatic variables
 - Reduction of bioclimatic and –physical variables to account for collinearity
 - Selection of variables based on ecological knowledge

- 119 distinct variables:
 - Mean annual precipitation
 - Mean annual temperature

- Greater focus must be given on each predictor entering the SDM
Aim of this project

• The intention was to investigate what we could achieve by a meta-type analysis of the Arboretum

• Is it possible to deduct anything *general* about performance of species at the Arboretum

 • Can we identify homologous climates for the Arboretum?
 • Are homologous climates the same for different genera?

• Improve knowledge of climatic requirements for future selection of variables, and thereby improve the accuracy of model predictions
The Hørsholm Arboretum

- Established in 1936
- More than 2000 species of trees and bushes
- The largest collection in Denmark

Current use of the Arboretum:
- Ressource for botany teaching
- Live genebank, used for a range of studies on trees and shrubs
- Studies of associated fauna and flora (fungi)
- Inspiration and leisure for ca. 20,000 annual visitors
- (Testing and identifying promising species)

- Has recognized the importance of data collection, storage and sharing from early on
- Registration books, Index cards, Database
Study Genera

- *Quercus* distributed throughout the Northern Hemisphere
 - 531 accepted species
 - 50 species in Europe and Mediterranean region
 - Only 2 naturally occurring *Quercus* species in Denmark (*Q. robur* and *Q. petraea*)
 - 118 trees in the Arboretum with representatives of 27 species mainly collected in North America, Europe and Asia
Study Genera

- *Abies* distributed throughout the Northern Hemisphere
- 52 species
- 8 species naturally occur in Europe and Asia minor
- No naturally occurring *Abies* species in Denmark
- The Arboretum holds 398 trees with representatives of 33 species collected in North America, Europe, Asia and North Africa
Study Genera

- *Rhododendron* has wide distribution but largest number of species are found in Asia
 - 1025 species
 - Small number of species occur in Europe
 - Only 1 naturally occurring *Rhododendron* species in Denmark (*R. tomentosum*)
 - 1380 plants in the Arboretum with representatives of 124 species collected from North America, Europe and Asia
Data collection

- Index cards and old versions of the Database were reviewed
- Source of collection coordinates (GPS coordinates, Latitude and Longitude, Location Name, Arboretum, Unknown)
- Collection site identified for each accession number (Atlases, Google Maps, Travel descriptions)
- Accuracy of identified collection site (30 seconds, 2.5 arc-minutes, 5 arc-minutes, 10 arc-minutes resolution)
Data collection

- Fieldwork:
 - Presence/absence of each accession number
 - Height and Diameter for *Quercus* and *Abies*

- Mean height and diameter for each accession number calculated

- Two measures for Growth calculated: mean height/age, mean diameter/age

- Exclusion of samples originating from botanical gardens, arboretums and unknown locations

- Exclusion of data with specificity of collection site of 10 arc-minutes resolution
Climate data

• Climate data downloaded from Worldclim
• Current conditions 1950-2000
• Downloaded using 5 arc-minute resolution
• 19 bioclimatic variables + altitude
• Altitude manually corrected when information available in registration books
• Quadratic covariate for each variable created in order to accommodate non-linear tendencies in the data

\[
\begin{align*}
\text{BIO1} &= \text{Annual Mean Temperature} \\
\text{BIO2} &= \text{Mean Diurnal Range (Mean of monthly (max temp - min temp))} \\
\text{BIO3} &= \text{Isothermality (BIO2/BIO7) } \ast 100 \\
\text{BIO4} &= \text{Temperature Seasonality (standard deviation *100)} \\
\text{BIO5} &= \text{Max Temperature of Warmest Month} \\
\text{BIO6} &= \text{Min Temperature of Coldest Month} \\
\text{BIO7} &= \text{Temperature Annual Range (BIO5-BIO6)} \\
\text{BIO8} &= \text{Mean Temperature of Wettest Quarter} \\
\text{BIO9} &= \text{Mean Temperature of Driest Quarter} \\
\text{BIO10} &= \text{Mean Temperature of Warmest Quarter} \\
\text{BIO11} &= \text{Mean Temperature of Coldest Quarter} \\
\text{BIO12} &= \text{Annual Precipitation} \\
\text{BIO13} &= \text{Precipitation of Wettest Month} \\
\text{BIO14} &= \text{Precipitation of Driest Month} \\
\text{BIO15} &= \text{Precipitation Seasonality (Coefficient of Variation)} \\
\text{BIO16} &= \text{Precipitation of Wettest Quarter} \\
\text{BIO17} &= \text{Precipitation of Driest Quarter} \\
\text{BIO18} &= \text{Precipitation of Warmest Quarter} \\
\text{BIO19} &= \text{Precipitation of Coldest Quarter}
\end{align*}
\]
Statistical Analysis

• 2 main components:

 • Linear regression to determine factors important to growth for *Quercus* and *Abies*

 • Logistic regression to determine factors affecting survival for *Quercus*, *Abies* and *Rhododendron*
Linear and Logistic Regression

<table>
<thead>
<tr>
<th></th>
<th>Abies Diameter/Age^{1/2}</th>
<th>Abies Height/Age^{1/2}</th>
<th>Abies Survival</th>
<th>Quercus Diameter/Age^{1/2}</th>
<th>Quercus Height/Age^{1/2}</th>
<th>Quercus Survival</th>
<th>Rhododendron Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Mean Temperature</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Diurnal Range</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Isothermality</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Temperature Seasonality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Temperature of Warmest Month</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Temperature of Coldest Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Annual Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Temperature of Wettest Quarter</td>
<td></td>
<td>**</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Temperature of Driest Quarter</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Temperature of Warmest Quarter</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Temperature of Coldest Quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Precipitation</td>
<td></td>
<td></td>
<td></td>
<td>***</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation of Wettest Month</td>
<td></td>
<td>*</td>
<td>***</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation of Driest Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation Seasonality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation of Wettest Quarter</td>
<td></td>
<td>*</td>
<td>***</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation of Driest Quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation of Warmest Quarter</td>
<td></td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Significance levels: 0.001 ‘***’, 0.01 ‘**’, 0.05 ‘*’, Brown = Quadratic variable included
Linear and Logistic Regression

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
Linear and Logistic Regression

BIO3 = Isothermality (BIO2/BIO7) (* 100)
- BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
- BIO7 = Temperature Annual Range (BIO5-BIO6)
- BIO5 = Max Temperature of Warmest Month
- BIO6 = Min Temperature of Coldest Month

![Graphs of Isothermality vs. Species](image)

- **Quercus**
- **Abies**
- **Rhododendron**

Nordic-Baltic Forest Conference 15.09.2015
Dias 19
The most successful species in the Arboretum

<table>
<thead>
<tr>
<th>Genus</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus</td>
<td>Q. coccinea</td>
<td>Q. coccinea</td>
</tr>
<tr>
<td></td>
<td>Q. velutina</td>
<td>Q. velutina</td>
</tr>
<tr>
<td></td>
<td>Q. palustris</td>
<td>Q. palustris</td>
</tr>
<tr>
<td></td>
<td>Q. rubra</td>
<td>Q. rubra</td>
</tr>
<tr>
<td></td>
<td>Q. petraea (DK)</td>
<td>Q. petraea (DK)</td>
</tr>
<tr>
<td>Abies</td>
<td>A. grandis</td>
<td>A. grandis</td>
</tr>
<tr>
<td></td>
<td>A. borisii-regis (EU)</td>
<td>A. alba (EU)</td>
</tr>
<tr>
<td></td>
<td>A. cephalonica (EU)</td>
<td>A. sachalinensis</td>
</tr>
<tr>
<td></td>
<td>A. homolepis</td>
<td>A. amabilis</td>
</tr>
<tr>
<td></td>
<td>A. alba (EU)</td>
<td>A. veitchii</td>
</tr>
</tbody>
</table>

- Non-survivors:
 - 13 species of *Quercus*
 - 4 species of *Abies*
 - ~40 species of *Rhododendron*
What can we learn from the Hørsholm Arboretum

- No shared significant predictor variables for both growth measurements between *Quercus* and *Abies*

- Shared predictor variables significant for either Height/Age or Diameter/Age between *Quercus* and *Abies*:
 - Mean Diurnal Range
 - Precipitation of Wettest Month
 - Precipitation of Wettest Quarter
 - Precipitation of Warmest Quarter
 - Altitude

- Only one common predictor variable (Isothermality – Bio3) for Survival between *Quercus*, *Abies* and *Rhododendron*

- Both linear and logistic regression showed a clear difference in significant predictor variables for each genera
Problems related to use of data from the Arboreum

- We can only measure what has survived
- Small dataset
- Skewed (biased?) distribution introductions
- Unequal numbers of plants tested from different accessions
- Origins may not be precisely described
- Plants established at different times have been exposed to different climatic conditions
- Heterogeneity of the Arboretum, lack of replications
- Arboretum highly managed / what about real life competition?
Can data from the Arboretum be used?

A generic method for climate change impact analysis of tree species planting domains

Trevor H. Booth • Tom Jovanovic • Chris E. Harwood

• Can data from the Arboretum can be used to identify species that will thrive under future climate conditions?

• Species survive and some even thrive in Hørsholm despite biovariables being warmer/colder/higher/lower than the areas from which they have been sampled

• Requirements based solely on expert opinion of conditions within the natural distribution

• Results in main plantation areas described as climatically unsuitable
Can data from the Arboretum be used?

- Knowledge of climatic requirements from trials, plantations and arboretums can improve description of a species climatic requirements

- By using identified significant climatic parameters we can avoid over-fitting models

- SDM predictions may be more accurate with the application of a “customized” set of predictor parameters
Thank you for listening