Forest tree breeding and Gene conservation in Denmark

NordGen
Akureyri, April 2018

Gunnar Friis Proschowsky
Introduction:
- The Nature Agency
- Danish Forest area
- Institutions

Breeding programmes:
- Forest trees
- Examples
- Achievements and Implementation

Gene conservation:
- Objectives
- Status
- Protection

Forest tree breeding and Gene conservation in Denmark, Akureyri 2018
The Danish Nature Agency

State forests represents 18% of the forest area

...to create the greatest possible value for society in terms of good conditions for outdoor recreation, nature protection and efficient operation of the agency's forests...

Close to nature forestry
Natural regeneration and planting
The Danish Nature Agency
…use of forest reproductive material

• Breeding and seed sources
• Continuous seed supply
• Gene conservation

• Seedlings, provenance requirements:
 ➢ Material from seed orchards
 ➢ Tested > Qualified > Selected
 ➢ Genetic diversity

• Information
 Non-scientific papers
 Descriptions of seed sources
 Thematic days
 Plantevalg.dk
The Danish forest area

2015: 14.5 % of area
625,000 ha.

The afforested area is increasing

Species distribution:
• Norway spruce 15 %
• Beech 14 %
• Pine sp. 11 %
• Oak sp. 10 %
• Birch sp. 7 %
• Sitka spruce 6 %
• Nordmann fir 5 %

• The main species covers almost 70 % of the forest area

Forest Statistics 2015
Forests and heaths
1762-1805

Bo Fritsbøger, SKOVEN p.68. (2018)
Digitized by Peder Dam, Peter Steen Nielsen, Claus Dam and Jan Bill (2003)
Forest cover 2016

A little history

1832 forestry education in DK

1901 State Forest Research institution 1901
Species- and provenance trials

1936 The Arboretum
1946 Tree Improvement Station

Selection, hybridisation and breeding
Larch, Douglas fir, Scotc pine
Propagation and Seed orchards

1990 Forest tree program
2000 Landscape program
2017 Climate robust species

Danish Nature Agency
HedeDanmark
University of Copenhagen (IGN)
Forest breeding program

Purposes
• Seed supply
• Tree improvement

Seemingly simple…to improve tree performance

❖ Select trees with desirable traits
❖ Test if the traits are heritable
❖ Produce offspring

In reality, many challenges…
Time, changing demands, resources, knowledge
CSO or SSO?

Examples: Sitka spruce, Douglas fir, ash
Sitka spruce

Planted in Denmark since 1860.

27 Provenance trials 1918-1992
Suitable provenances identified

Origins:
Washington and British Columbia

Breeding 1960-2000
- _Plus trees from seed stands_
- _Plus trees from seedlings_

Seed supply 1996-2014:
 - 87 % Seed orchards
 - 22 % Seed stands
 - 1 % Import
Sitka spruce

Seed sources:
 7 Seed orchards
 2 Seed stands

Improved:
Volume production, wood density, stem straightness, spiral grain, frost hardiness, aphid tolerance.

No new trials

2006-2015
5 new seed orchards
Improved:
 Stem straightness,
 12–50 % increased production
“The future Douglas fir seed sources – better growth and higher quality”

Hansen et al.
SKOVEN 5 2016
First generation seed orchards focus on stem straightness and health (1950-1970)
In second generation also focus on growth and diversity (1990-2010)
<table>
<thead>
<tr>
<th>Seed Orchard</th>
<th>Present performance compared to stands</th>
<th>Expected performance after thinning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP.262</td>
<td>Later flushing</td>
<td>Later flushing</td>
</tr>
<tr>
<td>Sønderskovgård</td>
<td>Straight trees + 24%</td>
<td>Straight trees + 24%</td>
</tr>
<tr>
<td>Established 1994</td>
<td>Diameter -9%</td>
<td>Diameter 0%</td>
</tr>
<tr>
<td>FP. 277 Tuse Næs</td>
<td>Straight trees + 11%</td>
<td>Straight trees + 21%</td>
</tr>
<tr>
<td>Established 1999</td>
<td>Diameter 0%</td>
<td>Diameter 0%</td>
</tr>
<tr>
<td>FP. 278 Sebberup</td>
<td>Later flushing</td>
<td>Later flushing</td>
</tr>
<tr>
<td>Established 1997</td>
<td>Straight trees + 22%</td>
<td>Straight trees + 24%</td>
</tr>
<tr>
<td></td>
<td>Diameter 0%</td>
<td>Diameter 8%</td>
</tr>
</tbody>
</table>
Ash *Fraxinus excelsior*

European ash dieback 2003

All Seed Orchards infested

Variation in susceptibility
1-5% healthy trees

Selection for low susceptibility
Forestry qualities as second priority

Diversity
1 tree per stand
Older than 55 years

2012-14: 214 plustrees:
4 new Clonal Seed Orchards
(35-105 clones)

Seed production in 2025
The future of ash?

1 seed orchard approved in 2017
Selected for low susceptibility

Replanting desirable

Genetic diversity?

The emerald ash borer
Agrilus planipennis,

…spreading from Asia, reached
european Russia in 2005 and USA in 2002.
Breeding implemented?

Seed supply dominated by Danish seed sources:

- Fagus sylvatica
- Picea abies
- Picea sitchensis
- Pinus sylvestris
- Alnus glutinosa
- Betula sp.
- Abies procera

Seed supply dominated by imported seeds:

- Quercus sp.
- Abies nordmanniana
- Abies alba
- Pseudotsuga menziesii

Acces
Institutions
Forest program

Forest tree breeding and Gene conservation in Denmark, Akureyri 2018
Gene conservation of trees and shrubs

The Danish strategy is from 1994:

- Evolutionary conservation
- 75 species
- Knowledge is expected to increase
- Strategy is adjustable
- Implementation in 10 years

The strategy is implemented on areas owned by the state forestry.

In situ is used for native species, and should cover different ecological zones.

Ex situ is used for native and introduced species.

Gene-ecological zones 1994
Conservation objectives

1. Genetic variation of actual or potential value

2. Buffer; changing environment

3. Building blocks; breeding

The good question: What is the value of trees in future?

Conservation contributes to the Danish biodiversity strategy
Gene conservation status

82 species are included

18 deciduous trees
20 coniferous trees
44 shrubs

Designation is implemented in the operative plans for state forests (Revised regularly)
In situ protection

58 species / 89 areas / 2880 ha

Each species is represented at 1-28 sites.
Forest trees typical at 8-15 sites

Areas often covered of other kinds of protection:
• Natural forest
• Natural conservation

Guidelines emphasizes
Natural regeneration
Isolation zone

Continues until other decisions are made
Ex situ

Covering 53 species

98 seed stands, seed orchards etc.
1200 ha

Clonal archives in breeding programmes of conifers
Ex situ protection

Managed for seed production

Clonal archives are a temporary conservation

In all cases decision about regeneration / renewal must be made after each rotation

The ex situ gives conservation “by use” And covers material of actual value
How good is the protection?

Will natural evolution be able to occur in the cultural forms of forests? Or will we rush in with management at first sign of any bottleneck?

Gene flow is probably much more abundant than any isolation zone can handle. But is it a problem?

How about disasters as forest fire? …or ash dieback? …or fast changing environment?
Climate change and benefit sharing

If growing conditions are changing...

Perhaps future use of FRM must rely on gene conservation programmes in other countries

Need for European cooperation, and sharing of knowledge and FRM is increasing

EUFGIS Pan-European gene conservation
Thank you

Jon Kehlet Hansen
Erik Dahl Kjær
Bruno Bilde Jørgensen
Ulrik Bräuner Nielsen
Jørgen Bo Larsen
Vivian Kvist Johannesen
Bo Fritsbøger

University of Copenhagen, IGN

Forest tree breeding and Gene conservation in Denmark, Akureyri 2018